证明了散度-旋度向量场(B,E)∈Llocq(1-ε)(Ω,Rn)×Llocp(1-ε)(Ω,RN)的高阶可积性,这里1〈p,q〈∞,1/p+1/q=1,ε充分小,divB=0,curlE=0满足逆不等式|B|q+|E|p≤C〈B,E〉+|F|q,其中F∈Lr(Ω,Rn),r〉q(1-ε).给出了上述结果在弱拟正则映射和非齐次A-调和方程divA(x,▽u)=divF很弱解中的应用. 更多还原
The aim of the present paper is to prove higher integrability results for div-curlvector fields(B,E)∈Llocq(1-ε)(Ω,Rn)×Llocp(1-ε)(Ω,Rn),1〈p,q〈∞,1/p+1/q = 1,εsufficientlysmall,such that div B=0,curl E=0 satisfying a reverse inequality of the type|B|q+|E|p≤C〈B,E〉+|F|q,with F∈Lτ(Ω,Rn),r〉q(1-ε).Applications to the theory of weak quasiregular mappingsand very weak solutions of nonhomogeneous A-harmonic equationsdivA(x,Δu)=div Fare given.