考虑A-调和方程divA(x,u)=0,设算子A满足:(i)强制性条件〈A(x,ξ),ξ〉≥α|ξ|p-φ1(x);(ii)控制增长条件|A(x,ξ)|≤β|ξ|p-1+φ2(x);(iii)齐次性条件A(x,0)=0,其中1〈p〈n,0〈α≤β〈∞是非负常数,φ1(x)∈Llso/cp(Ω),φ2(x)∈Lslo/c(p-1)(Ω),1〈p〈s〈n。设Kψp,θ(Ω)={v∈W1,p(Ω):v≥ψ,a.e.Ω,v-θ∈W01,p(Ω)},ψ为定义于Ω取值于R∪{±∞}的障碍函数,θ∈W01,p(Ω)为边值。利用Sobolev空间的不等式及嵌入引理,得到了如下局部可积性结果:若0≤ψ∈Wl1o,cs(Ω),则Kψp,θ-障碍问题的解u∈Llso*c(Ω),s*=nn-ss。本结果可看成是高红亚,田会英的结果的推广。
Consider A-harmonic equation divA(x,u)=0.Suppose that the operator A satisfies(i) coercivity condition A(x,ξ),ξ≥α|ξ|p-φ1(x);(ii) controllable growth condition |A(x,ξ)|≤β|ξ|p-1+φ2(x) and(iii) homogenity condition A(x,0)=0,where 1pn,0α≤β∞ are non-negative constants,φ1(x)∈Ls/ploc(Ω),φ2(x)∈Ls/(p-1)loc(Ω),1psn.LetKpψ,θ(Ω)={v∈W1,p(Ω):v≥ψ,a.e.Ω,v-θ∈W1,p0(Ω)},ψ be an obstacle defined on Ω valued in R∪{±∞},and θ∈W1,p0(Ω) be the boundary value.By using the inequalities in Sobolev spaces and embedding lemma,it is obtained that if 0≤ψ∈W1,sloc(Ω),then the solution u for the Kpψ,θ-obstacle problem belongs to Ls*loc(Ω) with s*=nsn-s.This result can be regarded as a generalization of the known result due to Gao and Tian.