在Rn中具有光滑边界的有界域Ω内考虑具有Dirichlet边界条件的半线性椭圆方程-Δu-μ|xu|2=g(x,u)+|u|2*-2u,这里g(x,.)在无穷远处具有次临界增长.由变分法,利用Brzis和Nirenberg“Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents.Comm.Pure Appl.Math.1983,36:437~477”的思想,证明了正解的存在性.
We consider the following semilinear elliptic equation -Δu-μ|xu|2=g(x,u)+|u|2*-2u in Ω with Dirichlet boundary condition, where g (x,.) has subcritical growth at infinity. The existence of positive solutions are obtained by variational method in the spirit of Brezis-Nirenberg.