通过建立Heisenberg群上无穷远处的集中列紧原理,研究了如下P-次Laplace方程 -△H,pu=λg(ξ)|u|^q-2u+f(ξ)|u|p^*-2u,在H^n上, u∈D^1,p(H^n), 其中ξ∈H^n,λ∈R,1〈P〈Q=2n+2,n≥1,1〈q〈p,P*=Qp/q-p,g(ξ),f(∈)是可以变号和满足一定条件的函数.在适当条件下利用集中列紧原理证明在某个水平处的Palais-Smale条件,从而结合变分原理得到方程存在m-j对解,其中m〉J,且m,J为整数.
The main results of this paper establish the concentration-compactness principle at infinity on the Heisenberg group. The authors consider the p-sub-Laplacian problem involving critical Sobolev exponents -△H,pu=λg(ξ)|u|^q-2u+f(ξ)|u|p^*-2u, in H^n, u∈D^1,p(H^n), where ξ∈H^n,λ∈R,1〈P〈Q=2n+2,n≥1,1〈q〈p,P*=Qp/q-p,g(ξ) and f(∈) change sign and satisfy some suitable conditions. Under certain assumptions, they show the existence of m - j pairs of nontrivial solutions via variational method, where m 〉 j, both m and j are integers. The concentration-compactness principle allows to prove the Palais-Smale condition is satisfied below a certain level.