位置:成果数据库 > 期刊 > 期刊详情页
基于BP神经网络的驾驶精神疲劳识别方法
  • ISSN号:0367-6234
  • 期刊名称:《哈尔滨工业大学学报》
  • 时间:0
  • 分类:U491[交通运输工程—交通运输规划与管理;交通运输工程—道路与铁道工程]
  • 作者机构:[1]西南交通大学交通运输与物流学院,成都610031, [2]中国科学院心理研究所,北京100101
  • 相关基金:国家自然科学基金资助项目(51108390,51108040)
中文摘要:

为了对驾驶精神疲劳予以有效识别,基于行为绩效结合心电信号指标构建了一种驾驶精神疲劳识别方法.以驾驶行为绩效为客观测评指标,给出了驾驶精神疲劳状态的分级划分方法.在此基础上,以心率变异性的6项指标作为疲劳识别特征因子,采用BP神经网络模型,建立了驾驶精神疲劳状态分类器.最后结合实例,依据驾驶行为绩效,将疲劳状态划分为2级,采用10名驾驶员连续4 h的驾驶行为绩效(反应时)、心电数据,对模型、方法予以测算.结果表明,10名驾驶员平均正确识别率在71%~80%之间,且其平均正确识别率为73%.BP神经网络模型与心率变异性指标相结合可有效的识别疲劳.

英文摘要:

To recognize driving mental fatigue efficiently,this study constructs a recognition method based on ECG. The method proposes hierarchy partition of state of driving mental fatigue by using driving behavior performance as objective evaluation indexes. Meanwhile,taking 6 indexes of HRV as fatigue recognition characterization factors and BP artificial neural network model,this paper establishes the recognition model for state of driving mental fatigue. Finally,according to examples,the mental fatigue is divided into two classifications.Collecting 4 hours continual driving behavior performance and ECG data from 10 drivers to test the model,the result shows that the average recognition accuracy rate is between 71% and 80%,and the average accuracy rate is 73%.The combination of BP neural network model and HRV indexes could recognize fatigue effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工业大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工业大学
  • 主编:冷劲松
  • 地址:哈尔滨市南岗区西大直街92号
  • 邮编:150001
  • 邮箱:
  • 电话:0451-86403427 86414135
  • 国际标准刊号:ISSN:0367-6234
  • 国内统一刊号:ISSN:23-1235/T
  • 邮发代号:14-67
  • 获奖情况:
  • 2000年获黑龙省科技期刊评比一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27329