位置:成果数据库 > 期刊 > 期刊详情页
驾驶员脑力负荷的SVM识别模型
  • ISSN号:0367-6234
  • 期刊名称:《哈尔滨工业大学学报》
  • 时间:0
  • 分类:U491.2[交通运输工程—交通运输规划与管理;交通运输工程—道路与铁道工程]
  • 作者机构:[1]西南交通大学交通运输与物流学院,成都610031, [2]成都市事故预防处,成都610031
  • 相关基金:国家自然科学基金(51108390); 国家自然科学基金委铁道联合基金资助(U1234206).
中文摘要:

车载信息系统的使用,道路交通控制信息的复杂,增加了驾驶员脑力负荷量.为对驾驶员脑力负荷进行有效识别,为自动辅助驾驶系统以及交通信息的整合优化设计提供依据,以驾驶员脑电信号δ(0.54 Hz),θ(48 Hz),α(813 Hz),β(1330Hz)频谱幅值为输入特征,结合SVM模型构建了驾驶员脑力负荷识别模型.在此基础上,基于驾驶模拟器实验数据,对该模型予以试算.结果表明,模型识别正确率可达93.8%~96.5%.该模型对驾驶员脑力负荷识别具有较高准确性,可用于驾驶员脑力负荷识别.

英文摘要:

The use of the vehicle information system and the complex road traffic control information make the mental workload of drivers increased. In order to recognize driving mental workload efficiently,provide the basis of automatic auxiliary driving and integrate the traffic information,the method use the EEG signal δ( 0.5- 4 Hz),θ( 4- 8 Hz),α( 8- 13 Hz),β( 13- 30 Hz) as the input features and SVM model to establish the recognition model for state of driving mental workload. Meanwhile,combine with examples based on EEG data from the simulator to test the model,the result shows that the average recognition accuracy rate was between 93. 8% and96.5%. The modle shows good accurancies for driver 's mental workload recognition and can be used in actual driving.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工业大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工业大学
  • 主编:冷劲松
  • 地址:哈尔滨市南岗区西大直街92号
  • 邮编:150001
  • 邮箱:
  • 电话:0451-86403427 86414135
  • 国际标准刊号:ISSN:0367-6234
  • 国内统一刊号:ISSN:23-1235/T
  • 邮发代号:14-67
  • 获奖情况:
  • 2000年获黑龙省科技期刊评比一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27329