主要用May谱序列证明了非平凡的乘积bok0δs+4 ∈ExtA^s+8,t(Zp,Zp),其中P是大于等于7的素数,0≤s〈p--4,q=2(p一1),t=(s+4)p。q+(s+3)p。q+(s+5)pq+(s+2)q+s.
In this paper, we make use of the modified May spectral sequence to prove the nontriviality of the product b0k0δs+4∈ExtsA^s+8,t(Zp,Zp),where p≥7 is a prime ,0≤s〈p-4,q=2(p-1),t=(s+4)p3q+(s+3)p2q+(s+5)pq+(s+2)q+s.