令A为模PSteenrod代数,证明了在A的上同调,也就是球谱的Adams谱序列的E2-项中,当P≥11,0〈s,P和n≥5时,乘积bοhοhnδs∈ExtA^s+4,t(s)(Z/p,Z/p)是非平凡的.其中f(5)=qE(s-2)+(s-1)p+(s-1)p^2+sp^3+P^n]+s-4.
Let A be the mod p Steenrod algebra, it's shown that in the cohomology of A, i. e E2-term of the Adams spectral sequence for the spheral spectrum, the product bohohnδs∈EXtAs+4 ,(s) (Z/p, Z/p) is nontrivial for p≥11, O≤s〉p and n≥5. Where t(s)=q[(s-2)+(s-1)p+(s-1)p^2+sp3q-pn]q-s--4.