位置:成果数据库 > 期刊 > 期刊详情页
基于CS与K-SVD的欠定盲源分离稀疏分量分析
  • ISSN号:1001-0505
  • 期刊名称:《东南大学学报:自然科学版》
  • 时间:0
  • 分类:TN912.35[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]东南大学水声信号处理教育部重点实验室,南京210096, [2]佛山科学技术学院,佛山528000
  • 相关基金:国家自然科学基金资助项目(60872073,60975017,51075068); 广东省自然科学基金资助项目(10252800001000001); 东南大学水声信号处理教育部重点实验室开放研究基金资助项目(UASP1003)
中文摘要:

为了提高盲源分离的准确率,提出了结合压缩感知(CS)与K均值奇异值分解(K-SVD)的稀疏分量分析方法进行盲源分离.首先,分析欠定盲源分离估计源信号与压缩感知问题的等价性,建立压缩感知框架;其次,在此框架下利用K-SVD方法训练稀疏字典;最后利用经典追踪算法计算得到稀疏分量,结合传统的两步法,进行盲源分离.大量实验表明,该算法与其他稀疏表示方法相比获得了较好的分离效果.与传统两步法不同的是,该算法在压缩感知框架下利用K-SVD方法自适应地训练稀疏字典,求出混合信号的稀疏表示,稀疏分量分析方法的改进对盲源分离的准确率起到直接的影响作用.

英文摘要:

To improve the precision of blind source separation,a method based on the compressed sensing(CS) and K-means singular value decomposition(K-SVD) is proposed.First,the equivalence between the problem of estimating the source in underdetermined blind source separation and the compressed sensing is analyzed and the framework of compressed sensing is built.Then K-SVD is used to train sparse dictionary self-adaptive under the framework.Finally the sparse component is computed using classic basis pursuit algorithm.Through lots of experiments the algorithm is proved to be a better algorithm,which inherits the advantages of sparse presentation ability and can significantly improve the precision of blind source separation.Different from traditional two steps methods,the algorithm proposed gets sparse presentation of signal taking a new way that combine CS and K-SVD,it shows that sparse presentation influences the result of blind resource separation directly.

同期刊论文项目
期刊论文 114 会议论文 7 专利 35
同项目期刊论文
期刊信息
  • 《东南大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:东南大学
  • 主编:毛善锋
  • 地址:南京四牌楼2号
  • 邮编:210096
  • 邮箱:xuebao@seu.edu.cn
  • 电话:025-83794323
  • 国际标准刊号:ISSN:1001-0505
  • 国内统一刊号:ISSN:32-1178/N
  • 邮发代号:28-15
  • 获奖情况:
  • 先后荣获第三届国家期刊奖百种重点期刊奖,2006-2...,2013年荣获首届江苏省新闻出版政府奖"报刊奖"
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23651