位置:成果数据库 > 期刊 > 期刊详情页
一种具有混合编码的二进制差分演化算法
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]石家庄经济学院信息工程学院,石家庄050031, [2]河北大学数学与计算机学院,保定071002, [3]军械工程学院计算机工程系,石家庄050003
  • 相关基金:国家自然科学基金项目(60473045,60471022) 作者在此特别感谢匿名审稿人对本文提出的宝贵建议!
中文摘要:

差分演化(DE)是Storn和Price于1997年提出的一种基于个体差异重组思想的演化算法,非常适用于求解连续域上的最优化问题.首先引入“差异算子”等概念,给出DE的一种简洁算法描述,并分析了它所具有的特性.然后,为了使DE能够求解离散域上的最优化问题,基于数学变换思想引入“辅助搜索空间”和“个体混合编码”等概念,通过定义一个特殊的满射变换,在辅助搜索空间的作用下将连续域上的高效差分演化搜索变换为离散域上的同步演化搜索,由此提出了第1个二进制差分演化算法:具有混合编码的二进制差分演化算法(HBDE).接着,给出了HBDE的依概率收敛和完全收敛的定义,并利用离散Markov随机理论证明了HBDE是完全收敛的.HBDE不仅完全具有DE的各种特性和所有优点,而且非常适用于求解离散域上的最优化问题,对随机生成的大规模3-SAT问题实例和典型0/1背包问题实例的数值计算表明:该算法具有很好的全局收敛性和稳定性,其性能远远超过二进制粒子群优化算法和遗传算法.

英文摘要:

Differential evolution (DE) is an evolutionary algorithm that is based on the individual differential reconstruction idea. It is proposed by Stom and Price in 1997, and is very suitable to solve optimization problem over continuous spaces. First of all, with the introduction of concepts of differential operator (DO), etc., the concise description of DE is given and the analyis of its main features is advanced. For solving discrete optimization problem using DE, based on the idea of mathematic transform, the concepts of adjuvant search space and individual hybrid encoding are advanced. And with a definition of special mapping and the function of adjuvant search space, the high efficient differential evolution search over a continuous space is transformed into the homomorphism evolution search over discrete spaces. Thus, the binary differential evolution algorithm with hybrid encoding (HBDE) is first proposed. Subsequently, given definitions of probabilistic convergence and complete convergence of HBDE, and proved these by using Markov random theory. HBDE not only has the advantages of DE, but also is very suitable to solve discrete optimization problems. Calculations of instances to random 3-SAT problem and 0/1 knapsack problem show that HBDE has better convergence capability and stability, and its property is far more superior to binary particle swarm optimization as well as genetic algorithm.

同期刊论文项目
期刊论文 47 会议论文 20 著作 1
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349