目的:构建并获得mPEG-PLGA-BSA-FITC-NPs载蛋白复合物,评估mPEG-PLGA载体体外递送目的蛋白对Hela细胞的有效率及安全性,以筛选适用于内耳疾病治疗的理想的、具有缓释特性的多肽、蛋白质类药物递送载体材料。方法:应用mPEG化学修饰PLGA纳米材料作作为递送载体,携带标记有异硫氰酸荧光素(FITC)的牛血清白蛋白(BSA),体外转导Hela细胞,选择不同的时间利用激光共聚焦荧光显微镜观察细胞递送效率并对阳性细胞计数,计算评估递送有效率,采用MTT法检测不同时间点mPEG-PLGA-BSA-FITC-NPs载体复合物的体外细胞安全性。结果:mPEG-PLGA-BSA-FITC-NPs呈现经典纳米尺寸大小,包封率达到(51.2±2.3)%,且具有持续、缓慢释放的特性,在优化的体外递送条件下,mPEG-PLGA-BSA-FITC-NPs体外递送蛋白有效率最高达到了63.7%以上;同时,在mPEG-PLGA-BSA-FITC-NPs递送效率达到最佳的条件下,细胞安全性为85.7%。结论:mPEG-PLGA-BSA-FITC-NPs纳米复合物作为一种新型的、安全有效的纳米蛋白递送载体材料,能够成功携带靶向蛋白体外递送细胞,且具有缓慢释放特性,能够为未来应用纳米材料进行感音神经性聋的治疗提供良好的载体系统。
Objective: To construct and obtain ideal protein delivery vectors by researching the delivery efficiency and cytotoxicity to Hela cells using mPEG-PLGA-BSA-FITC-NPs. Method:The mPEG-PLGA nanoparticle was obtained through surface modification of PLGA with PEG, and deliver BSA-FITC into Hela cells in vitro. The positive cells were counted by Laser scanning confocal microscopy and the survival rate of Hela cells was calculated by MTT assay at different time points. Result: mPEG-PLGA-BSA-FITC-NPs shows the classic nanometer size, and the encapsulation efficiency reached 51.2 %. At the same time, the nanoparticles possess characteristics of slow release. By optimizing the delivery conditions, the highest efficiency of mPEG-PLGA-BSA-FITC-NPs was above 65.2%, and the cellular viability was about 85.7 %. Conclusion: mPEC-PLGA-BSA-FITC-NPs nanoparticles can successfully carry the target protein into cells as safe and effective as novel delivery materials of protein in vitro, and has shown slow release characteristics. The mPEG-PLGA-BSA-FITC-NPs provide ideal delivery vector for future application in clinical treatment of disease using nano-materials.