位置:成果数据库 > 期刊 > 期刊详情页
带非凸二次约束的二次比式和问题的全局优化算法(英文)
  • ISSN号:1001-9847
  • 期刊名称:《应用数学》
  • 时间:0
  • 分类:O221.2[理学—运筹学与控制论;理学—数学]
  • 作者机构:[1]河南师范大学数学与信息科学学院,河南新乡453007, [2]新乡学院数学系,河南新乡453003
  • 相关基金:Supported by the National Natural Science Foundation of China(10671057)
中文摘要:

对带非凸二次约束的二次比式和问题(P)给出分枝定界算法,首先将问题(P)转化为其等价问题(Q),然后利用线性化技术,建立了(Q)松弛线性规划问题(RLP),通过对(RLP)可行域的细分及求解一系列线性规划问题,不断更新(Q)的上下界,从理论上证明了算法的收敛性,数值实验表明了算法的可行性和有效性.

英文摘要:

In this paper a branch and bound approach is proposed for solving sum of quadratic ratios problem with nonconvex quadratic constraints (P),based on the rectangular partition.Firstly,the problem (P) is converted into an equivalent sum of linear ratios problem with quadratic constrains (Q).Then,utilizing the linear relaxation technique,a liner relaxation programming problem (RLP) about (Q) is established which is solved and provides a lower bound of the optimal value.The proposed algorithm is convergent to the global minimum through the successive refinement of the feasible region and the solution of a series of the linear programming problems.The numerical experiments show the effectiveness and feasibility of the algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用数学》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:华中科技大学
  • 主编:李大潜
  • 地址:武汉珞喻路1037号华中科技大学逸夫科技大楼南楼902室
  • 邮编:430074
  • 邮箱:yysx_hust@163.com
  • 电话:027-87543831
  • 国际标准刊号:ISSN:1001-9847
  • 国内统一刊号:ISSN:42-1184/O1
  • 邮发代号:38-61
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:4139