设S为有限射影平面,G为群且G≤Aut(S).若对某q=2^2n+1,使Sz(q)≤G≤Aut(Sz(q)),则G不能点传递地作用于S上.
Let S be a finite projective plane, G be a group and G≤Aut(S). If Sz(q)≤G≤Aut(Sz(q)), where q= 2^2n+l , then G cannot act point-transitively on S.