假定Г是一个有限的、单的、无向的且无孤立点的图,G是Aut(Г)的一个子群,如果G在Г的边集合上传递,则称Г是G-边传递图,我们完全分类了当G为一个有循环的极大子群的素数幂阶群时的G-边传递图,结果为:设图Г含有一个阶为p^n(p是素数,n≥2)的自同构群,且G有一个极大子群循环,则Г是G-边传递的,当且仅当,同构于下列图之一 1)p^mK1,p^n-1-m,0≤m≤n-1; 2)p^mK1,p^n-m,0≤m≤n; 3)p^mKp,p^n-m-1,0≤m≤n-2; 4)p^n-mCpm,p^m≥3,m〈n; 5)2^n-2K1,1; 6)p^n-1-mCpm,p^m≥3,m≤n-1; 7)2p^n-mCpm,p^m≥3,m≤n-1; 8)2p^n-mK1,pm,0≤m≤n; 9)p^n-mK1,2pm,0≤m≤n; 10)p^n-mK2,pm,0≤m≤n; 11)C(2pn-m,1,p^m); 12)p^kC(2p^m-k,1,p^n-m),0〈k〈m,0〈m≤n; 13)(t-s,2^m)C(2m+1/(t-s,2^m),1,2^n-1-m),其中0≤m≤n-1,2^n-2(s-1)≡0(mod 2^m),t≡1(mod2),≠t(mod2^m),1≤s≤2^m,1≤t≤2^n-1; 14)p∪i=1C^i p^n-1,其中C^i p^n-1=Ca1a1+[1+(i-1)p^n-1]^a1+2[1+(i-1)p^n-2]…a1+(p^n-1-1)[1+(i-1)p^n-2]≈Cpn-1,i=1,1…,p; 15)2∪i=1C^i 2^n-1,其中C^i 2^n-1=Ca1a1+[1+(i-1)(2^n-2-1)^a1+2[1+(i-1)(2^n-2-1)]…a1+(2n-1-1)[1+(i-1)(2n-2-1)]≈C2n-1,i-1,2.
Abstract Let Г be a finite simple undirected graph with no isolated vertices, G is a subgroup of Aut(Г). The graph Г is said to be G-edge transitive if G is transitive on the set of edges of Г. We obtain a complete classification of G-edge transitive graphs, when G is a group of prime-power order with a cyclic maximal subgroup. This extends Sander's conclusion. Then Г is G-edge-transitive if and only if Г is one of following graphs:1)p^mK1,p^n-1-m,0≤m≤n-1; 2)p^mK1,p^n-m,0≤m≤n; 3)p^mKp,p^n-m-1,0≤m≤n-2; 4)p^n-mCpm,p^m≥3,m〈n; 5)2^n-2K1,1; 6)p^n-1-mCpm,p^m≥3,m≤n-1; 7)2p^n-mCpm,p^m≥3,m≤n-1; 8)2p^n-mK1,pm,0≤m≤n; 9)p^n-mK1,2pm,0≤m≤n; 10)p^n-mK2,pm,0≤m≤n; 11)C(2pn-m,1,p^m); 12)p^kC(2p^m-k,1,p^n-m),0〈k〈m,0〈m≤n; 13)(t-s,2^m)C(2m+1/(t-s,2^m),1,2^n-1-m),其中0≤m≤n-1,2^n-2(s-1)≡0(mod 2^m),t≡1(mod2),≠t(mod2^m),1≤s≤2^m,1≤t≤2^n-1; 14)p∪i=1C^i p^n-1,where C^i p^n-1=Ca1a1+[1+(i-1)p^n-1]^a1+2[1+(i-1)p^n-2]…a1+(p^n-1-1)[1+(i-1)p^n-2]≈Cpn-1,i=1,1…,p; 15)2∪i=1C^i 2^n-1,where C^i 2^n-1=Ca1a1+[1+(i-1)(2^n-2-1)^a1+2[1+(i-1)(2^n-2-1)]…a1+(2n-1-1)[1+(i-1)(2n-2-1)]≈C2n-1,i-1,2.