利用四元数矩阵的复表示及友向量的概念结合复数域上的Hermitian阵的性质证明了四元数自共轭矩阵的特征值的变分特征,并利用变分特征研究了四元数矩阵特征值的性质.得到了四元数矩阵的Wey1定理、单调性定理、柯西分隔定理等一系列结果.
Variational characterizations of eigenvalues of self-conjugate quaternion matrices was proved by using of the concept of complex presentation of quaternion matrix and companion vector and the properties of Hermitian matrix. A series of results such as Weyl theorem, monotonicity theorem and Cauchy separating theorem was gotten by the variational characterizations.