以矩阵的秩为工具,研究了三矩阵右半张量积的(T,S,2)-逆的反序律,给出了三矩阵右半张量积成立的几个充要条件,对于完善矩阵广义逆理论和促进矩阵代数的理论发展有很大的理论价值.充分探讨了三矩阵右半张量积的(T,S,2)-逆的反序律问题,一方面完善了矩阵右半张量积理论,推广了矩阵右半张量积,另一方面也完善了矩阵理论内容.
By using ranks of matrices,we study the reverse order law for the(T,S,2)-inverse of a triple matrix right semi-tensor product and present each of the prerequisites for the formation of this semi-tensor product.Such a study is of great theoretical significance for the improvement of generalized matrix inverse theory and the development of matrix algebra theory.It also contributes to improving the matrix right semi-tensor product theory and helps to spread the matrix right semi-tensor product.Furthermore,it enriches the content ot the matrix theory.