为了研究缺失偏态数据下的联合位置与尺度模型,基于分布自身的特点,提出了一种适合缺失偏态数据下联合建模的插补方法——修正随机回归插补方法,该方法对缺失数据下模型偏度参数的调整十分显著.通过随机模拟和实例研究,并与回归插补和随机回归插补方法进行比较,结果表明,所提出的修正随机回归插补方法是有用和有效的.
We investigate the joint location and scale models with missing skew-normal data and propose a new random regression imputation method named corrected stochastic regression imputation based on the characteristics of the distribution. It's useful to revise the skewness parameter in joint models. Compared with regression imputation, random regression imputation methods, simulation studies and a real example show the corrected random regression imputation method is useful and effective.