位置:成果数据库 > 期刊 > 期刊详情页
基于反k近邻的流数据离群点挖掘算法
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]燕山大学信息科学与工程学院,秦皇岛066004
  • 相关基金:国家自然科学基金资助项目(60773100);教育部科学技术研究基金资助重点项目(205014);河北省教育厅科研计划基金资助项目(2006143)
中文摘要:

基于局部离群因子的增量挖掘算法需要多次扫描数据集。反k近邻适用于度量离群程度,根据该性质提出基于反k近邻的流数据离群点挖掘算法(SOMRNN)。采用滑动窗口模型更新当前窗口,仅须进行一次扫描,提高了算法效率。通过查询过程实现在任意指定时刻对当前窗口进行整体查询,及时捕捉数据流概念漂移现象。实验结果证明,SOMRNN具有适用性和有效性。

英文摘要:

Incremental mining algorithms based on local outlier factor demand multiple scans of the data set. Stream data Outlier Mining algorithm based on Reverse k Nearest Neighbors(SOMRNN) is proposed according to the concept that reverse k nearest neighbors is suitable to measure outlier degree. The sliding window is adopted to update the current window with one scan, which improves the algorithm efficiency. The capability of queries at arbitrary time on the whole current window is achieved by query manager procedure, which can capture the phenomenon of concept drift of data stream in time. Experimental results show that SOMRNN has feasibility and efficiency.

同期刊论文项目
期刊论文 91 会议论文 9 专利 1
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139