位置:成果数据库 > 期刊 > 期刊详情页
基于KNN图的空间离群点挖掘算法
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]燕山大学信息科学与工程学院,河北秦皇岛066004
  • 相关基金:国家自然科学基金资助项目(60773100);河北省教育厅科研计划基金资助项目(2006143)
中文摘要:

空间数据集中离群数据与正常数据之间的非空间属性值相差较大。针对该情况,提出一种基于K-最邻近(KNN)图的空间离群点挖掘算法。该算法通过所有对象的K近邻关系构造KNN图,将相邻对象非空间属性值的差作为2个对象点间的边权值,利用裁边策略去掉权值较高的边,从而识别出空间离群点和离群区域。实验结果表明,该算法的时间性能优于POD算法。

英文摘要:

Aiming at the problem that the non-spatial attribute differences between outlier and normal data are very large, this paper propose a spatial outlier mining algorithm based on K-Nearest Neighbor(KNN) graph. It constructs a KNN graph based on K neighbor relationship in spatial domain, assigns the non-spatial attribute differences as edge weights, and cuts high-weight edges to identify spatial outliers and outlier region. Experimental result shows that time performance of this algorithm is superior to POD algorithm.

同期刊论文项目
期刊论文 91 会议论文 9 专利 1
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139