利用埃尔米特自反正半定矩阵的表示定理,建立了线性矩阵方程在埃尔米特自反半正定矩阵集合中可解的充分必要条件,得到了解的一般表达式。最后对任意一个给定的复矩阵,推导出了相关的最佳逼近问题解的表达式。
By using the properties of Hermitian-Reflexive Semi-definite Matrices, this paper investigates the necessary and sufficient conditions for the solvability of the linear matrix equation in Herimitian-Reflexive Semi-definite Matrix set, and presents a general expression of the solution for the problem. Finally, for any given complex matrix, the representation of its unique optimal approximation is derived.