本文主要研究了带位移的反厄米特型Toeplitz线性方程组Anx=b的一个新的反厄米特循环预处理子Cn,其中矩阵An的元素是函数f(θ)=a0+ig(θ)的傅里叶系数.如果g(θ)是Wiener类实值函数,则矩阵Cn非奇异;且当n足够大时,矩阵(Cn^-1An)·(Cn^-1An)的谱以1为聚点,数值实验进一步显示了我们的预处理子是有效的.
In this paper we propose a new skew hermitian circulant preconditioner Cn for solving skew hermitian type Toeplitz linear systems Anx = b. For a Toeplitz matrix An whoso entries are the Fourier coefficients of function f(θ) = ao + ig( θ), where g(θ) is a real-valued function in the Wiener class, we show that Cn is nonsingular and the spec-trum of the matrix (Cn^-1An ) · (Cn^-1An ) clusters around one when n is sufficiently large. Numerical experiments fur-ther demonstrate the effectiveness of our preconditioners.