本文主要研究解对称正定矩阵的多级迭代法,并对其收敛性进行证明。最后用数值实验验证此方法的有效性.多级迭代法特别适用于并行计算,并且可以被理解为古典迭代法的扩展,或共轭梯度法的预处理子。
In this paper a multistage iterative method for solving the symmetric positive definite linear systems is established and the convergence of the method is proved. A numerical example is given to illustrate the effectiveness of our method. The method is especially suitable for parallel computation, and can be viewed as a extension of the classical iterative method or as a preconditioner for the conjugate gradient method.