讨论了用4阶拟Bernstein基表示阿基米德螺线的充要条件,利用该充要条件可以得到用4阶拟Bernstein基表示的阿基米德螺线的控制顶点,从而可以方便地表示阿基米德螺线,并且有明显的几何意义.利用阿基米德螺线段和圆弧来构造凸轮,实现了凸轮的多边形控制.
This paper discusses the necessary and sufficient condition to represent the Archimedes helix with Bernstein-like basis of order four. Under this condition, we can obtain the control points of the Bezierrepresented Archimedes helix. Then we can express the Archimedes helix expediently. In addition, with the Archimedes helix and circular are, we can construct a cam, so the control of the cam with a polygon comes true.