位置:成果数据库 > 期刊 > 期刊详情页
一种基于ICA和模糊LDA的特征提取方法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京理工大学计算机科学与技术学院,南京210094, [2]唐山学院网络教育中心,唐山063000
  • 相关基金:国家自然科学基金重点资助项目(No.60632050)
中文摘要:

独立成分分析(ICA)和线性鉴别分析(LDA)是两种经典的特征提取方法.为了更好地解决人脸识别中的特征提取问题,在已有的两种方法进行特征抽取的基础上引入模糊技术,抽取重叠(离群)样本中有助于分类的特征.首先用ICA进行初次特征提取,然后采用模糊k近邻方法得到相应的样本分布信息,最后在此基础上用模糊LDA进行二次特征提取,得到有效的特征向量集.在3个人脸数据库上的实验结果表明本文方法的有效性.

英文摘要:

Independent component analysis (ICA) and linear discriminant analysis (LDA) are two classical feature extraction methods. To extract optimal features, fuzzy technology is introduced into the fusion method of ICA and LDA. The proposed method can extract discriminative features from overlapping (outlier) samples effectively. Firstly, ICA is employed to extract initial features. Then, fuzzy k -nearest neighbor (FKNN) is implemented to achieve the distribution information of original samples. Finally, fuzzy LDA (FLDA) is performed on the basis of the above computation, and the effective feature vectors are extracted. Experimental results on the AR, ORL and NUST603 face databases demonstrate the effectiveness of the proposed method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169