位置:成果数据库 > 期刊 > 期刊详情页
基于增强的2维主成分分析的特征提取方法及其在人脸识别中的应用
  • ISSN号:1006-8961
  • 期刊名称:《中国图象图形学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京理工大学计算机学院,南京210094, [2]盐城市无线电管理处,盐城224001
  • 相关基金:国家自然科学基金重点项目(60632050);国家自然科学基金项目(60503026,60473039);国家高技术研究发展计划(863)项目(2006AA01Z119);江苏省酱通高校研究生科研创新计划资助项目(CX07B_118z)
中文摘要:

为了对图像进行最优压缩,提出了两步2维主成分分析方法进行特征提取,称为增强的2维主成分分析。增强的2维主成分分析首先对图像进行行方向的2维主成分分析,再进行列方向的2维主成分分析。增强的2维主成分分析对图像进行了行方向和列方向的压缩,因此增强的2维主成分分析比2维主成分分析需要更少的系数来表示图像,需要更少的存储空间和分类时间。在ORL和FERET人脸库上的实验证明了该方法的有效性。

英文摘要:

In this paper, a two-stage method of image feature extraction, called Enhanced two-dimensional principal component analysis (2DPCA) , is proposed in this paper, which uses 2DPCA operated in the row direction and alternative 2DPCA operated in column direction. Enhanced 2DPCA can compress image in row and column direction. Enhanced 2DPCA needs fewer coefficients for image representation than 2DPCA does. The experimental results on the ORL and FERET database show that the Enhanced 2DPCA can work well and surpass two-directional two-dimensional principal component analysis (( 2 D )^2 PCA ).

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数码影像》
  • 主管单位:
  • 主办单位:中国图象图形学学会 中科院遥感所 北京应用物理与计算数学研究所
  • 主编:
  • 地址:北京市海淀区花园路6号
  • 邮编:100088
  • 邮箱:
  • 电话:010-86211360 62378784
  • 国际标准刊号:ISSN:1006-8961
  • 国内统一刊号:ISSN:11-3758/TB
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:0