位置:成果数据库 > 期刊 > 期刊详情页
基于保持投影的最大散度差的特征抽取方法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京理工大学计算机科学与技术学院,南京210094, [2]唐山学院网络教育中心,唐山063000
  • 相关基金:国家自然科学基金重点资助项目(No.60632050)
中文摘要:

对非监督鉴别投影(UDP)准则进行修正,并在修正的准则基础上提出基于保持投影的最大散度差的特征抽取方法.该方法利用非局部散度与局部散度之差作为鉴别准则,从而避免UDP线性鉴别分析中所遇到的小样本问题引起的局部散度矩阵奇异的问题.在标准人脸数据库Yale和FERET上进行实验,实验结果表明本文方法的有效性.

英文摘要:

Firstly, the unsupervised discriminant projection (UDP) criterion is modified. Then, the feature extraction method of the maximum scatter difference based on preserving projection is proposed on the basis of the modified discriminant criterion. The proposed method adopts the difference of both nonlocal scatter and local scatter as discriminant criterion. Thus, the singular problem of local scatter caused by small sample size problem in UDP linear discriminant analysis is avoided. Finally, experimental results on Yale and FERET face databases demonstrate the effectiveness of the proposed method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169