Bonferroni 不平等在为在可贸易的排放和另外的骇人的资源的最佳的分配的申请是重要的。Kounias 和 Sotirakglou 改进了 Bonferroni 不平等,他们为在 P (∪ _(i=1 )~ n A_i ) 形式的 Bonferroni 不平等给更低、上面的界限,但是他们没讨论为 P (∪ _(i=1 )~ nA_i ) 的更低、上面的界限最佳。在这篇论文,我们给方法为在∑ _(i=1 ) 形式的 Bonferroni 不平等获得更低的最佳和上面的界限 ~ m (为在条件下面的 P (∪ _(i=1 )~ n A_i ) 的 -1)~(i+1)a_iS_i 那 Q (r) ≥(≤) 0。Kounias-Sotirakglou 界限的 optimality 也被学习。
Bonferroni inequalities are significant in application for optimal allocation in tradable emission and other scary resources. Kounias and Sotirakglou improved Bonferroni inequalities, they give the lower and upper bounds for Bonferroni inequalities in the form of P(Ui=1^nAi),but they did not discuss the optimal of lower and upper bounds for P(Ui=1^nAi).In this paper, we give the method to obtain the optimum lower and upper bounds for Bonferroai inequalities in the form of ∑i=1^m(-1)^i+1 aiSi for P(Ui=1^nAi)under the condition tha Q(r)≥(≤)0,The optimality of Kounias Sotirakglou bounds is also studied.