为了提高分数低阶恒模均衡算法的收敛速度,提出了一种基于分数低阶恒模代价函数的拟牛顿自适应盲均衡算法.由于在权矢量更新方程中引进了代价函数的二阶Hessian矩阵,从而使算法的收敛速度较利用最速下降法的分数低阶恒模算法大大提高且具有较好的韧性。利用Matlab对两种算法进行仿真,仿真结果对新算法性能的提高进行了验证。
A new quasi-Newton constant modulus algorithm based on fractional lower-order statistics (QNFLOS_CMA) for migration of intersymbol interference (ISI) was introduced. This algorithm results in the performance enhancement of convergence speed than that of the constant modulus algorithm based on fractional lower-order statistics (FLOS_CMA), by the exploitation of Hessian information within the weight update equation. Simulations support the improved convergence properties of the new algorithm.