以alpha稳定分布过程为噪声模型,依据分数低阶统计量理论提出了广义恒模算法,分析了广义恒模算法在于扰和加性alpha稳定分布噪声下的收敛特性.研究表明,广义恒模算法的收敛行为由接收信号的初始增益和信干比等条件确定,并由此可以对收敛过程作出预测和控制.利用计算机仿真验证了广义恒模算法的这种特性.
This paper introduces alpha-stable distribution as additive noise model and generalizes the constant modulus algorithm(CMA) .An analytic study of the convergence properties of the generalized CMA(GCMA) is presented. It is shown that the convergence behavior can be predicted and controlled by the combination of initial gains and SIR( Signal Interference Ratio). The special properties of the GCMA are verified by computer simulations.