位置:成果数据库 > 期刊 > 期刊详情页
基于移动长基线的多AUV协同导航
  • 期刊名称:机器人
  • 时间:0
  • 页码:581-585
  • 语言:中文
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西北工业大学航海学院,陕西西安710072
  • 相关基金:国家自然科学基金资助项目(60875071,50979093);教育部新世纪优秀人才支持计划资助项目(NCET-06-0877).
  • 相关项目:通讯受限下的欠驱动自主水下航行器编队控制研究
中文摘要:

基于扩展卡尔曼滤波(EKF)理论研究了多AUV协同导航定位的移动长基线算法.移动长基线多AUV协同导航结构中,主AUV内部装备高精度导航设备,从AUV内部装备低精度导航设备,外部均装备水声装置测量相对位置关系,利用移动长基线算法融合内部和外部传感器信息,实时获取从AUV的位置信息.建立了协同导航系统数学模型,设计了EKF协同导航算法,在各种测试情况下通过仿真验证了所推导的分析结果,对EKF和几何解方程算法的导航效果进行了比较.研究结果表明,以主AUV作为移动的长基线节点时,通过EKF算法可以显著提高群体的导航定位精度.

英文摘要:

Moving long baseline (MLBL) algorithm based on extended Kalman filter (EKF) for cooperative navigation and localization of multiple AUVs (autonomous underwater vehicles) is proposed. In MLBL-based multi-AUV cooperative navigation structure, the master AUV is equipped with high precision navigation system, and the slave AUV is equipped with low precision navigation system. They both are equipped with acoustic devices to measure relative location. The moving long baseline algorithm combines proprioceptive and exteroceptive information, and gets the real time position of slave AUV. The math model of cooperative navigation system is developed, and a cooperative navigation algorithm based on extended Kalman filter is designed. The analytical results derived in this paper are validated with simulation in different test cases, and navigation performances of EKF algorithm and geometric equation algorithm are compared. The research results prove that the navigation accuracy of AUV group is improved effectively by using EKF algorithm in the condition that master AUV is used as moving long baseline node.

同期刊论文项目
同项目期刊论文