引入左QMUP-内射(模)环的概念并研究其相关性质,得到如下结果:1)R为左泛极小内射环当且仅当每个单左R-模是QMUP-内射模;2)设R是左QMUP-内射环,则Zz(R)∈J(R)且R/Zz(R)是π-正则环;3)左QMUP-内射环是左极小内射环;4)设R为一个环,包含一个内射的极大左理想,则R是左自内射环当且仅当R是左QMUP-内射环.
In this paper, left QMUP-injeetive (modules) rings are introduced and some properties of left QMUP-injective rings are discussed. The following results are obtained: 1) R is a left universally mininjective ring if and only if every simple left R-module is QMUP-injective; 2) If R is a left QMUP-injective ring, then ZI(R)∩J(R) and R/Zt(R) is a a-regular ring 3) Left QMUP-injeetive rings are left mininjective; 4) If R contains an injective maximal left ideal, then R is a left self-injectire ring if and only if R is a left QMUP-injective.