位置:成果数据库 > 期刊 > 期刊详情页
基于混沌遗传算法的模糊LS-SVM分类器及其应用
  • 期刊名称:华南理工大学学报(自然科学版)
  • 时间:0
  • 页码:49-54
  • 语言:中文
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]华南理工大学自动化科学与工程学院,广东广州510640, [2]惠州学院电子科学系,广东惠州516007
  • 相关基金:国家自然科学基金资助项目(60874114)
  • 相关项目:非线性随机动态系统的稳定性分析、镇定与控制及其应用研究
中文摘要:

为克服支持向量机算法对噪声点和异常点的敏感性,采用清晰集合构造模糊集合法确定隶属度,采用混沌遗传算法优化参数的模糊最小二乘支持向量机分类器(FLS-SVMBCGA),并用著名的Ripley数据集、MONK数据集和PIMA数据集进行了数值实验,对油气输送管道的TPD检测信号进行了诊断.结果表明,FLS-SVMBCGA分类器能有效提高带噪声点和异常点数据集分类的预测精度,对油气输送管道的TPD信号分类效果高于91.67%,可实现对油气输送管道TPD信号的准确诊断.

英文摘要:

In order to reduce the sensitivity of the support vector machines(SVM) to noise and outliers,a new fuzzy least squares-support vector machines classifier based on chaos genetic algorithm is proposed and is abbreviated to FLS-SVMBCGA,in which the clear sets are used to construct a fuzzy membership set and the chaos genetic algorithm is adopted to optimize the parameters.Then,some experiments are carried out on three benchmarking datasets such as the Ripley dataset,the MONK dataset and the PIMA dataset.Finally,the TPD signals from oil and gas transmission pipeline are diagnosed using the proposed classifier.The results show that FLS-SVMBCGA is effective in improving the prediction accuracy of the classification problems with noises or outliers,with a classifying effect for TPD signals being higher than 91.67%,which means that the proposed algorithm can accurately diagnose the TPD signals from oil and gas transmission pipeline.

同期刊论文项目
同项目期刊论文