共轭A-调和张量的一些局部A^λτ3(λ1,λ2,Ω)-加权积分不等式得到了证明,它们可看作是共轭调和函数和P调和函数相应结果的推广.这些结果可用来研究共轭调和函数的可积性并估计它们的积分.同时也给出上述结果在拟正则映射中的应用.
This paper proves some local A^λ3τ(λ1, λ2,Ω)-weighted integral inequalities for conjugate A-harmonic tensors, which can be considered as generalizations of conjugate harmonic functions and p-harmonic functions, p 〉 1. These results can be used to study the integrability of conjugate harmonic functions and estimate the integrals for them. Some applications of the above results to quasiregular mappings are given.