本文讨论了一类非线性分数阶微分方程奇异有界边值问题解的存在性。微分算子是Riemann-Liouville导算子,并且非线性项依赖于低阶分数阶导数。本文的理论分析基于Schauder不动点定理,并举例论证了结论的有效性。
In this paper, we discuss the existence of solution to singular boundary value for a class of nonlinear fractional differential equation. The differential operator is the Riemann-Liouville derivative and the inhomogeneous term depends on the frac-tional derivative of lower order. Our analysis relies on Leray-Schauder’s fixed point theorem. Finally, an example is given to illustrate the effectiveness of the result.