在这篇文章,一个平行硬件处理器被介绍在多项式基础表示计算椭圆形的曲线数量增加。处理器对由使用一个模块化的算术逻辑单位(MALU ) 的分级的增加的操作适用。MALU 由二增加,一增加,并且一摆平组成。二增加和增加或摆平的罐头在平行被计算。在 GF (2163 ) 上的分级的增加的整个计算能在 3 064 个周期被执行。模拟结果基于 Xilinx Virtex2 XC2V6000 FPGA 证明建议设计能计算随机的 GF (2163 ) 在 31.17 s 的椭圆形的曲线数量增加操作,和资源占据 3 994 个寄存器和 15 527 LUT,它显示秘密成员处理器对高效的申请合适。
In this article, a parallel hardware processor is presented to compute elliptic curve scalar multiplication in polynomial basis representation. The processor is applicable to the operations of scalar multiplication by using a modular arithmetic logic unit (MALU). The MALU consists of two multiplications, one addition, and one squaring. The two multiplications and the addition or squaring can be computed in parallel. The whole computations of scalar multiplication over GF(2^163) can be performed in 3 064 cycles. The simulation results based on Xilinx Virtex2 XC2V6000 FPGAs show that the proposed design can compute random GF(2^163) elliptic curve scalar multiplication operations in 31.17 μs, and the resource occupies 3 994 registers and 15 527 LUTs, which indicates that the crypto-processor is suitable for high-performance application.