在获取具有统计特征的不确定信息的情况下,开发最优远程火力打击战法是联合作战规划中必须解决的重要难题,借助仿真、概率统计以及贝叶斯博弈分析的混合方法,通过对不确定信息进行贝叶斯统计分析,构建了在不确定信息条件下全局最优的远程火力打击战法设计的理论模型,为解决该问题提供了可行方法,对该模型的初步研究表明:在不确定信息条件下,全局最优的远程火力打击战法比局部最优的远程火力打击战法更能满足复杂多变的战场需求,取得更好的战果。
How to develop optimal long-range fire attack tactics based on indeterminate information is one of important and difficult problems in research on disposition for joint operation.According to Bayesian statistics analysis for indeterminate information,a global-optimal concept model based on indeterminate information is built for designing optimal long-range fire attack tactics by using mixed method based on simulation,statistics and Bayesian game theory.The initial results of research on this model mechanism show that the global-optimal long-range fire attack tactics can better satisfy complex requirements of battle field and can give better battle results than local-optimal long-range fire attack tactics.