位置:成果数据库 > 期刊 > 期刊详情页
基于最小二乘支持向量机和信息融合技术的水电机组振动故障诊断
  • ISSN号:0258-8013
  • 期刊名称:《中国电机工程学报》
  • 时间:0
  • 分类:TK312[动力工程及工程热物理—热能工程]
  • 作者机构:[1]西安理工大学水利水电学院,陕西省西安市710048
  • 相关基金:国家自然科学基金项目(90410019).
中文摘要:

应用最小二乘支持向量机和信息融合技术对水电机组的振动故障进行诊断。采用以水电机组振动信号的频域特征和时域振幅特征作为特征向量的学习样本,通过训练,使最小二乘支持向量机能够反映特征向量和故障类型的映射关系,在完成局部诊断后再实现决策信息融合,从而达到故障诊断的目的。以水电机组振动故障诊断为例,进行了应用检验。研究结果表明,与常规方法相比,最小二乘支持向量机和信息融合技术相结合的方法具有快速有效等优点,适合水电机组振动故障的诊断。

英文摘要:

Vibration fault diagnosis of hydroelectric unit was investigated using method of least square support vector machine (LS-SVM) and Dempster-Shafer theory (D-S Theory). Spectrum and amplitude characteristic was acted as eigenvector of learning samples to train the constructed LS-SVM regression and classifier for realizing mapping relationship between the fault and the characteristic. Information fusion was realized after completing local diagnosis, and then fault diagnosis was achieved. Experiments show that the method has a rapidly diagnostic process and generalization performances. It is suitable for the vibration fault diagnosis of hydroelectric unit.

同期刊论文项目
期刊论文 117 会议论文 46 著作 4
同项目期刊论文
期刊信息
  • 《中国电机工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国电机工程学会
  • 主编:张文涛
  • 地址:北京清河小营东路15号 中国电力科学研究院内
  • 邮编:100192
  • 邮箱:pcsee@epri.sgcc.com.cn
  • 电话:010-82812536 82812534 82812545
  • 国际标准刊号:ISSN:0258-8013
  • 国内统一刊号:ISSN:11-2107/TM
  • 邮发代号:82-327
  • 获奖情况:
  • 1992年全国优秀科技期刊三等奖,1992年中国科协优秀科技期刊二等奖,1996年中国科协优秀科技期刊二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:98970