位置:成果数据库 > 期刊 > 期刊详情页
粗糙集理论在水轮发电机组故障诊断中的应用
  • 期刊名称:大电机技术, 2007, (4):33-36.
  • 时间:0
  • 分类:TM312[电气工程—电机]
  • 作者机构:[1]西安理工大学,陕西西安710048
  • 相关基金:国家自然科学基金重点项目(90410019)、陕西省自然科学基础研究计划项目(2006D13)资助
  • 相关项目:巨型混流式水轮机组水力振动与稳定性研究
中文摘要:

为了对水轮发电机组故障诊断过程中大量的冗余信息特征进行压缩,提高诊断的效率,本文将粗糙集理论引入到水轮发电机组故障诊断中。并采用基于遗传算法的粗糙集知识约简方法,对水轮发电机组故障信息进行压缩处理。通过对具体诊断实例分析,结果表明:该方法能够在保证故障分类结果不变的情况下,有效剔除具有冗余信息,找出对故障分类起主要作用的特征,减少了对诊断信息的需求,有效地提高了水轮发电机组故障诊断的效率。

英文摘要:

In order to improve diagnosis efficiency and compress the many redundant features in hydrogenerator units fault diagnosis, the rough set theory is introduced. The rough set feature reduction method based on the genetic algorithm is proposed and be used to deal with the fault information of hydrogenerator units. The representative samples in hydrogenerator units fault diagnosis are analyzed. The results show that when the fault classification result is almost invariable, the redundant factors can be eliminated efficiency and the main features which is more important to the fault classification can be searched through this algorithm. There search work not only reduces the requirement of diagnosis information, but also improves efficiency of the hydrogenerator units fault diagnosis.

同期刊论文项目
期刊论文 117 会议论文 46 著作 4
同项目期刊论文