本文提出了一种结合全三维反问题计算与遗传算法优化的轴流式水轮机转轮设计方法。即在对轴流式水轮机转轮叶片进行全三维反问题设计的基础上,然后以平面叶栅表面边界层中的流动损失最小和翼型气蚀系数最低为目标,小生境遗传算法进一步对转轮叶片进行优化以得到更为理想的转轮叶片。由于此方法结合了全三维反问题方法对有厚度叶片计算的准确性,以及遗传算法对解决多目标优化问题全局搜索的准确性,可以得到比较理想的转轮叶片。
An optimal design method, based on genetic algorithm and three-dimensional inverse problem design method,has been used to improve the design of a Kaplan turbine. This method is applied to the design of runner geometry,considering the interaction between runner blades and flow. it also has the advantage of niche genetic algorithm in solving multi objective problems. Hence, by using this optimal design method we can obtain better runner blade compare to traditional design method.