哺乳动物雷帕霉素靶蛋白( mammalian target of rapamy-cin, mTOR)是衰老和衰老相关疾病的一个关键调节因子。雷帕霉素( rapamycin, RAPA)可通过抑制mTOR通路,诱导和促进细胞自噬的发生。细胞自噬是维持细胞内稳态的主要方式与途径,通过降解多余的、受损的及衰老的蛋白与细胞器,为细胞重建、再生和修复提供必需原料。早老症( hutchinson-gil-ford progeria syndrome, HGPS )患者细胞中伴随早老蛋白( progerin)的异常聚集;此外,诸如亨廷顿病、帕金森病、阿尔茨海默病等神经退行性疾病细胞内同样出现异常蛋白质的聚集,而这些异常蛋白的清除正依赖干细胞的自噬作用。由此可见,雷帕霉素是潜在的抗衰老、治疗早老症及衰老相关疾病的重要药物。该文主要阐述雷帕霉素促进细胞自噬方面的功能及在HGPS、神经退行性疾病方面的应用。
Mammalian target of rapamycin( mTOR) is a key reg-ulator of aging and aging-related diseases. Rapamycin ( RAPA) induces and promotes the process of cell autophagy through in-hibiting mTOR pathway. Autophagy exerts a crucial role in main-taining the cellular meostasis, which provides essential materials for cell reconstruction, regeneration and repair via degradating the redundant, damaged, or senescent proteins and organelles. Hutchinson Gilford progeria syndrome ( HGPS ) patients are al-ways accompanied with abnormally accumulated progerin in cells. Similar to HGPS, abnormal protein accumulation is the common pathological feature of neurodegenerative diseases, in-cluding Huntington′s disease, Parkinson′s disease, Alzheimer′s disease and so on. Degradation of these abnormal proteins pre-dominantly depends on cell autophagy. Thus, rapamycin is a po-tential anti-aging drug for HGPS and aging-related diseases thera-py. This view focuses on the effects of rapamycin on cell autoph-agy and clinical application in HGPS and neurodegenerative dis-eases.