研究了等待空间有限的两服务台可修排队系统,其中一个服务台可能故障.到达的顾客可能进入系统也可能不进入系统(止步),进入系统的顾客可能因等待的不耐烦而中途退出.利用马尔可夫过程的方法建立了系统稳态概率满足的方程组,通过分块矩阵推导出了系统稳态概率向量的迭代计算公式,由此得到了系统各项性能指标的计算公式.最后,给出了一些数值结果.
We consider a two-server repairable queuing system with finite waiting space and one server who may breakdown. Arriving customers may enter system or not enter system (balk) and the customers in the queue may renege because of losing patience. By using the Markov process method, we establish the steady-state probability equations, derive the iterative formulas of the steady-state probability vectors and the system performance measures based on partitioning matrix. Some numerical results are also given.