位置:成果数据库 > 期刊 > 期刊详情页
有限域上存在弱自对偶正规基的一个充要条件
  • ISSN号:1000-8314
  • 期刊名称:《数学年刊:A辑》
  • 时间:0
  • 分类:O156.1[理学—数学;理学—基础数学]
  • 作者机构:[1]四川师范大学数学与软件科学学院,成都610066, [2]四川大学数学学院,成都610064
  • 相关基金:国家自然科学基金(No.10671137),博士点科研专项基金(No.20060636001),四川省教育厅青年基金(No.20058024)资助的项目.
中文摘要:

对于将有限域上的自对偶基概念推广到了更一般的弱自对偶的情形,给出了有限域上存在这类正规基的一个充要条件:设q为素数幂,E=Fq^n为q元域F=Fq的n次扩张,N={αi=α^q^i|i=0,1,…,n-1)为E在F上的一组正规基.则存在c∈F^*及r,0≤r≤n-1,使得β=Cαr生成N的对偶基的充要条件是以下三者之一成立;(1)q为偶数且n≠0(mod4);(2)n与q均为奇数;(3)q为奇数,n为偶数,(-1)为F中的非平方元旦r为奇数.

英文摘要:

This paper expands self-dual bases to general weakly self-dual bases and gets a sufficient and necessary condition for the finite field which has a weakly self-dual normal basis as the following: Let q be the power of a prime, E = Fq^n be the n-dimensional extension of the finite field F = Fq, and N = {αi = α^q^i | i = 0, 1,... , n - 1} be a normal basis of E over F. Then there exist some c ∈ F^* and some r, 0 ≤ r ≤n - 1 such that β = cαr generates the dual of N if and only if either q is even and n ≠ 0 (mod 4); or n and q are odd; or q is odd, n is even, (-1) is a nonsquare in F and r is odd.

同期刊论文项目
期刊论文 43 会议论文 1 著作 3
同项目期刊论文
期刊信息
  • 《数学年刊:A辑》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:复旦大学
  • 主编:李大潜
  • 地址:上海市长乐路746号
  • 邮编:200040
  • 邮箱:edcam@fudan.edu.cn
  • 电话:021-65642338
  • 国际标准刊号:ISSN:1000-8314
  • 国内统一刊号:ISSN:31-1328/O1
  • 邮发代号:4-298
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:4264