设R是任意带单位元的结合环,L(R)表示Levitzki根,左素理想谱specl(R)是一个弱Zariski拓扑空间。本文主要研究所有包含L(R)的左素理想谱Sl(R)的正规性与环的Gelfand性、Sl(R)的开闭集与环的幂等元的关系。证明了:设R是任意环,对任意Sl(R)的开闭集∪,都存在环R一个幂等元e,使得∪=∪l(Re)∩Sl(R)。
Let R be any associative ring with identity, specl ( R ) the set of all left prime ideals of R, L ( R ) Levitzki Radical and Sl (R) the set of all left prime ideals containing L ( R ). Then specl ( R ) is a space with weak Zariski topology. In this paper, the relationships of Sl ( R )' s normality and Gelfand rings, and of clopen sets in Sl (R) and idempotents in R, will be studied. It is proved that, for any ring R and any clopen set ∪ of Sl( R ), there is an idempotent e∈ R such that ∪= ∪l(Re)∩ Sl(R).