引进了子模的w-根的概念,并讨论了它的性质.作为所得结果的应用,分别对乘法模与有限生成自由模上的w-根进行了研究.特别地,证明了若F=R^(n),N=∑i=1 m Rαi F,且α F,则α∈W-radFN当且仅当[α,α12,…,αm]t w-radR[0,α1,…,αm]t,其中1≤t≤min{m+1,n}.
Abstract We introduce the notion of the w-radical of a submodule and study the properties of w-radicals. As applications of the obtained results, we study the w- radicals of multiplication modules and finitely generated free modules respectively. m In particular, we prove that if F=R^(n),N=∑i=1 m Rαi F and α ∈ F, then α ∈ w-radFN if and only if [α,α12,…,αm]t w-radR[0,α1,…,αm]t for all 1≤t≤min{m+1,n}.