位置:成果数据库 > 期刊 > 期刊详情页
Peltier effect in doped silicon microchannel plates
  • ISSN号:1674-4926
  • 期刊名称:《半导体学报:英文版》
  • 时间:0
  • 分类:TN144[电子电信—物理电子学] TQ174.756[化学工程—陶瓷工业;化学工程—硅酸盐工业]
  • 作者机构:[1]Laboratory of Polar Materials and Devices, Ministry of Education, and Department of Electronic Engineering, East China Normal University, Shanghai 200241, China, [2]Department of Microelectronics, Fudan University, Shanghai 200433, China, [3]Department of Physics and Material Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
  • 相关基金:Project supported by the Shanghai Fundamental Key Project (No. 10JC1404600), the Shanghai Natural Science Foundation (No. 11ZR1411000), the Innovation Program of Shanghai Municipal Education Commission (No. 09ZZ46), the International Collaboration Project (No. 10520704400), the National Natural Science Foundation of China (Nos. 60990312, 61076060, 61176108), and the City University of Hong Kong Strategic Research Grant (SRG) (No. 7008009). The authors would like to extend their sincere thanks to Prof. Qu Xinping (Fudan University) for conducting the phosphorus doping work.
中文摘要:

<正>The Seebeck coefficient is determined from silicon microchannel plates(Si MCPs) prepared by photoassisted electrochemical etching at room temperature(25℃).The coefficient of the sample with a pore size of 5×5μm2,spacing of 1μm and thickness of about 150μm is -852μV/K.along the edge of the square pore.After doping with boron and phosphorus,the Seebeck coefficient diminishes to 256μV/K and -117μV/K along the edge of the square pore,whereas the electrical resistivity values are 7.5×10-3Ω·cm and 1.9×10-3Ω·cm,respectively. Our data imply that the Seebeck coefficient of the Si MCPs is related to the electrical resistivity and is consistent with that of bulk silicon.Based on the boron and phosphorus doped samples,a simple device is fabricated to connect the two type Si MCPs to evaluate the Peltier effect.When a proper current passes through the device,the Peltier effect is evidently observed.Based on the experimental data and the theoretical calculation,the estimated intrinsic figure of merit ZT of the unicouple device and thermal conductivity of the Si MCPs are 0.007 and 50 W/(m·K), respectively.

英文摘要:

The Seebeck coefficient is determined from silicon microchannel plates (Si MCPs) prepared by photo- assisted electrochemical etching at room temperature (25 ℃). The coefficient of the sample with a pore size of 5 × 5μm^2, spacing of 1 μm and thickness of about 150 μm is -852μV/K along the edge of the square pore. After doping with boron and phosphorus, the Seebeck coefficient diminishes to 256 μV/K and -117 μV/K along the edge of the square pore, whereas the electrical resistivity values are 7.5 × 10^-3 Ω·cm and 1.9 × 10^-3 Ω·cm, respectively. Our data imply that the Seebeck coefficient of the Si MCPs is related to the electrical resistivity and is consistent with that of bulk silicon. Based on the boron and phosphorus doped samples, a simple device is fabricated to connect the two type Si MCPs to evaluate the Peltier effect. When a proper current passes through the device, the Peltier effect is evidently observed. Based on the experimental data and the theoretical calculation, the estimated intrinsic figure of merit ZT of the unicouple device and thermal conductivity of the Si MCPs are 0.007 and 50 W/(m.K), respectively.

同期刊论文项目
期刊论文 96 会议论文 2 专利 4
同项目期刊论文
期刊信息
  • 《半导体学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国电子学会 中国科学院半导体研究所
  • 主编:李树深
  • 地址:北京912信箱
  • 邮编:100083
  • 邮箱:cjs@semi.ac.cn
  • 电话:010-82304277
  • 国际标准刊号:ISSN:1674-4926
  • 国内统一刊号:ISSN:11-5781/TN
  • 邮发代号:2-184
  • 获奖情况:
  • 90年获中科院优秀期刊二等奖,92年获国家科委、中共中央宣传部和国家新闻出版署...,97年国家科委、中共中央中宣传部和国家新出版署三等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:7754