首先讨论了Ω符号的Toeplitz算子在Dirichlet空间D~2上的交换性,推广了有界调和符号情形,也给出了不同于经典Hardy空间或Bergman空间上交换性的新情形;其次给出了L_θ~(∞,1)符号Toeplitz算子与径向或拟齐次符号的Toeplitz算子可交换的充要条件.所得结果与Hardy空间,Bergman空间以及Dirichlet空间D均有不同.
This paper deals with the commutativity of Toeplitz operators on the Dirichlet space D~2 with symbols inΩ,which generalizes the case of bounded harmonic symbols and gives a new case for commutativity which is different from that of the classical spaces such as the Hardy space or Bergman space.Also,it gives the necessary and sufficient conditions for Toeplitz operator on the Dirichlet space D~2 with symbol in L_θ~(∞,1) commuting with that with the radial or quasihomogeneous symbol.The results obtained are quite different from the case on the Hardy space or Bergman space or Dirichlet space D.