位置:成果数据库 > 期刊 > 期刊详情页
真实场景运动目标轨迹有效性判断与自动聚类算法研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP242.62[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]西北工业大学自动化学院,陕西西安710072
  • 相关基金:国家自然科学基金资助项目(60372085);陕西省科学技术研究发展计划项目(2003K06-G15)
中文摘要:

提出了真实场景中的运动目标轨迹有效性判断与自动聚类方法。利用轨迹长度、坐标值方差及目标相邻两帧运动方向等信息,对轨迹进行了预处理,得到有效的轨迹,然后以其作为样本,计算轨迹之间的空间相似距离,采用K均值聚类法,按轨迹的几何形状完成了轨迹聚类。提出了利用目标运动的起始点及整个运动过程中目标的运动方向信息,采用K均值聚类方法,进一步按目标的运动方向完成了轨迹聚类。两种真实场景的目标轨迹聚类结果证明了该方法的有效性。其研究结果为学习轨迹模式、目标运动轨迹识别、分类、异常检测奠定了基础。

英文摘要:

A novel method that can accurately validate and cluster trajectories of the moving objects in real scenes was presented. Firstly, through calculating the length, variance of the coordinates and orientation code of the trajectories, valid trajectories were retained. And then the valid ones were taken as the samples and automatically clustered based on K-means approach using the distance between two trajectories. Moreover, a new method to further cluster the trajectories using the start points of them and the information of orientation during the whole process was presented. The trajectories are effectively clustered in two real scenes. Results can provide efficient evidence for the latter work such as trajectory recognition, classification, and anomaly detection.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049