位置:成果数据库 > 期刊 > 期刊详情页
非线性时间序列预报的隐多分辨ARMA模型
  • ISSN号:1000-8152
  • 期刊名称:《控制理论与应用》
  • 时间:0
  • 分类:O211[理学—概率论与数理统计;理学—数学]
  • 作者机构:[1]西北工业大学应用数学系,陕西西安710072, [2]中国科学院自动化研究所模式识别国家重点实验室,北京100080
  • 相关基金:国家自然科学基金资助项目(60375003);国家航空基础项目(03153059).
中文摘要:

研究一类用于非线性时间序列预报的隐多分辨自回归滑动平均(ARMA)模型,该模型以ARMA模型为初始细水平模型(即隐多分辨模型的基本块).证明了模型的建模精度由水平间的方差决定.研究了新模型的自相关函数结构。给出了参数估计的Bayes方法主Metropolis,Hasting算法.进一步提出了一种可以直接用于不同基本块的隐多分辨模型的非线性时间序列预报方法,证明了其比其他的线性预报方法和隐多分辨模型预报方法降低了预报误差.最后通过数值模拟和实例验证了模型和预报方法,并和其他模型进行比较,结果表明新提出模型和预报方法能够更好地描述数据的特征,提高预报的精度.

英文摘要:

A class of hidden multi-resolution autoregressive moving average (ARMA) model is studied for forecasting nonlinear time series. The model has ARMA model as the original fine level model, that is, the building blocks. The precision of the model for approximating the true one is determined by the variance among the levels. The autocorrelation functions (ACF) structure of the new model is then studied. The estimation of parameters is easily performed via Bayes method and Metropolis-Hasting algorithm. Furthermore, a new method for nonlinear time series forecast is proposed. The method can be directly applied to hidden multi-resolution model with different building blocks, and reduce the forecasting error compared with other linear method and hidden multi-resolution model forecast method. Finally, the model and approaches are illustrated through the use of both simulated and real series. The new model and forecasting method appear to capture features of the data better and provide more precise forecasting than other competing models do.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制理论与应用》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:华南理工大学 中国科学院数学与系统科学研究院
  • 主编:胡跃明
  • 地址:广州五山路华南理工大学3号楼516室
  • 邮编:510640
  • 邮箱:aukzllyy@scut.edu.cn
  • 电话:020-87111464
  • 国际标准刊号:ISSN:1000-8152
  • 国内统一刊号:ISSN:44-1240/TP
  • 邮发代号:46-11
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:21084