考虑[0,π]上一类分离型边界条件的常型S-L问题特征值的渐近表示,利用Prüfer变换,对特征值进行精细的分析,清楚地给出了方程系数q(x)及边界条件中常数sinα,cosα,sinβ,cosβ对特征值的影响.
The asymptotic expansion of eigenvalues for an ordinary Stirm-Liouville problem in [0,π] is considered. By combining Prüfer transformation ,a sophisticated analysis for the eigenvalues is given to reveal the explicit effects of boundary conditions and equation coefficient.