将正则Sturm-Liouville问题的一些性质推广到一类带转移条件的Sturm-Liouville问题中,这类问题在内部点上或者解不连续或者拟导数不连续.重点研究了特征函数的振动性,并通过数值实例验证了相应的振动性结论.
Some fundamental properties of eigenfunctions for regular Sturm-Liouville problems are extended to special kind boundary value problems,which have discontinuities in the solution or its quasi-derivative at an interior point.Oscillatory properties of eigenfunctions are investigated,primarily.Examples with numericals verified corresponding conclusions.